
Embedded
programming in

Ada
Fabien Chouteau, Yannick Moy

AdaCore

High level goals

Designed for Safety & Reliability

Designed for large-scale applications to embedded systems

Designed for being as much as possible right from the first time

Programming is about communication

With:
● The compiler
● The other tools (static analyzers, provers, etc.)
● Users of your API
● Your colleagues
● Your future self...

Strong typing

Consider the following

void set_throttle(float percent);

So full power is what: 100.0 or 1.0?

Strong typing

In Ada, you’d write

type Percentage is new Float range 0.0 .. 1.0;
procedure Set_Throttle (Value : Percentage);

Set_Throttle (50.0);

produces a compiler error
 or a runtime error

Contracts

It’s all about specifying what’s done

 procedure Inc (Value : in out Percentage;
 Amount : Percentage)
 with Post => Value = (if Percentage’Last > Value’Old + Amount
 then Value’Old + Amount
 else Percentage’Last);

… more to come in the next part of the presentation

Multitasking: the Ravenscar profile1

Ceiling locking, with a FIFO within priorities
Periodic tasks, timed events
Mutual exclusion, shared access
Synchronization
Interrupt handling
Multi-core support

1 https://blog.adacore.com/theres-a-mini-rtos-in-my-language

Representation clause

Used to represent precisely a memory mapped object
… such as a register

Representation clauses
type F_Type is (Off, Third, Two_Third, Full)
 with Size => 2;

type Reg is record
 …

 F : F_Type;
 …

end record
 with Size => 32, Volatile_Full_Access;

for Reg use record
 …

 F at 0 range 3 .. 4;
 …

end record;

Representation clauses
Allows you to replace

tmpreg = Periph->Reg;
tmpreg = (tmpreg & ~0x18) | (Value << 3);
Periph->Reg = tmpreg;

by

Periph.Reg.F := Value;

Embedded
program proving

in SPARK
Yannick Moy, AdaCore

Some embedded software should
never crash or hang or be hacked…

or someone dies.

Building Perfect™ Software

KISS - Keep it simple, stupid

Certification processes (e.g. avionics) - re-re-reverifying

Use better programming languages and tools

SPARK = Ada + proof

Support all Ada (OO, concurrency) except pointers (in progress)

Proof - mathematical guarantee

Made usable for (embedded) developers

Proof -
the developer

view

Proof -
under

the hood

An example of proof
procedure Increment (X : in out Integer)
 with Global => null,
 Depends => (X => X),
 Pre => X < Integer'Last,
 Post => X = X'Old + 1;

procedure Increment (X : in out Integer)
is
begin
 X := X + 1;
end Increment;

data dependencies
flow dependencies
functionality

robustness

Examples of open source projects in SPARK

EwoK - secure microkernel for USB

“Software classes of attacks (e.g. buffer overflows)
are mitigated using EwoK [...] providing more
confidence by using the Ada safe language along
with SPARK for formal verification of critical
parts.”

https://github.com/wookey-project/ewok-kernel

Muen - secure separation kernel

“The Muen Separation Kernel is the world’s
first Open Source microkernel that has been
formally proven to contain no runtime errors
at the source code level.”

https://muen.codelabs.ch/

Beyond absence of runtime errors

Data invariants
From Muen project

type Table_Pointer_Type is range 0 .. 2 ** 35 - 1
 with Dynamic_Predicate =>
 Table_Pointer_Type mod MC.Page_Size = 0;

type Legacy_IRQ_Range is range 0 .. 23
 with Static_Predicate => Legacy_IRQ_Range /= 2;

Defensive Coding
From project github.com/Componolit/libsparkcrypto

function SHA512_Hash
 (Message : Message_Type;
 Length : Message_Index) return SHA512_Hash_Type
with
 Pre =>
 Message'First <= Message'Last and
 Length / Block_Size +
 (if Length mod Block_Size = 0 then 0 else 1)

 <= Message'Length;

Correct API usage
From Muen project

procedure Clear_State (Id : Skp.Subject_Id_Type)
 with Refined_Post => Descriptors (Id) = SK.Null_Subject_State;

procedure Restore_State
 (Id : Skp.Subject_Id_Type;
 Regs : out SK.CPU_Registers_Type)
 with Refined_Post => Descriptors (Id).Regs = Regs;

Functional correctness
From project github.com/jcdubois/moth/tree/spark

procedure os_sched_wait (task_id : out os_task_id_param_t;
 waiting_mask : os_mbx_mask_t)
 with
 Pre => os_ghost_task_list_is_well_formed and
 os_ghost_mbx_are_well_formed and
 os_ghost_current_task_is_ready,
 Post => os_ghost_task_list_is_well_formed and
 os_ghost_task_is_ready (task_id);

[Continued…]

function os_ghost_task_list_is_well_formed return Boolean is
-- The mbx fifo of all tasks need to be well formed.

(
 -- The list might be empty. This is legal.
 (os_sched_get_current_list_head = OS_TASK_ID_NONE and
 -- then all element are disconnected (not in a list)
 (for all task_id in os_task_list_rw'Range =>
 -- no next
 os_task_list_rw (task_id).next = OS_TASK_ID_NONE
 -- no prev
 and os_task_list_rw (task_id).prev = OS_TASK_ID_NONE
 -- and all tasks are in not ready state
 and not (os_ghost_task_is_ready (task_id))
 ...

Want to learn Ada or SPARK?

Want to try Ada or SPARK?

https://www.adacore.com/community

Supported boards

1 https://github.com/adacore/bb-runtimes

● STM32 Discovery boards
○ STM32F411E-disco

○ STM32F429I-disco

○ STM32F469I-disco

○ STM32F746G-disco

○ STM32F769I-disco

● Raspberry Pi2 (Bare metal)

● Micro:bit

● TI TMS570

● HiFive1 (RiscV)

● … and more1

